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Antiphase boundaries in Hg,Br, and KSCN
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Abstract. The angular dependences of the free energy, thickness and stresses are
calculated for the antiphase boundaries (APBs) paraliel to the tetragopal z axis but
otherwise arbitrarily oriented. The general results are applied to Hg,Br, and KSCN.
The AeB in the former case is shown to decay into two ferroelastic domain walls, while
it is stable in KSCN. High stresses occur around the APE in KSCN and more than 50%
of the free energy originates from the inhomogeneous strain in the wall, The observed
etched patierns in KSCN are discussed.

1. Introduction

The orientations of coherent ferroelastic domain walls (FDWs) in ferroelastic crystals
are fully determined by the different spontaneous deformations of both domains
separated by the wall [1,2]. Even if the domains perfectly match at the coherent
FDW, the gradually changing structure giving rise to the inhomogeneous strains results
in the appearance of stresses in the ¥FDW and an increase in the wall energy. In
the framework of the Landau-Ginzburg phenomenological approach characteristics
of the FDWs—the thickness and the surface energy—were studied in the perovskite
crystal BaTiO, [3,4], which undergoes an improper ferroelastic proper ferroelectric
phase transition. Recently a complex and consistent analysis of the domain walls
in the improper ferroelastic perovskite crystal SrTiO; was performed [5,6]. It was
shown that the usual assumption of the quasi-one-dimensional wall structure requires
an appropriate distribution of the surface forces around the domain wall [5,6). The
known empirical values of the free-energy expansion coefficients for the SrTiO;, crystal
made the numerical estimation of the FDW characteristics possible.

Contrary to FDWs, the orientation of a non-ferroelastic domain wall (non-FDW)
is not determined by the spontaneous deformation, since it is the same in both
domains separated by the wall. Instead, the anisotropy of the crystal structure
and the inhomogeneous strains in the wall [S] as well as the induced electric
depolarization field [7] play an important role. The 180° ferroelectric domain wall
in barium titanate [3] and the antiphase boundaries (APBS) in strontium titanate [5],
which belong to the non-FDWs, were studied with respect to their crystallographic
orientations. Their equilibrium structure was assumed to be linear (Ising type) and
was described as a simple kink. The angle-dependent free energy and the thickness
of the 180° ferroelectric domain walls were calculated for BaTiO, [8] and TGS [9].

1 Permanent address: Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 13040
Prague, Czechoslovakia.
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The results obtained were in qualitative agreement with the observed orientational
anisotropy. Considering the deformations of the crystal in two dimensions only,
the temperature-dependent orientation of the stress-free APB in the orthorhombic
improper ferroelastics, e.g. Gd,(MoO,),, was calculated [10] and found to be in good
agreement with experiments [11,12].

Severa) workers calculated the position-dependent order parameter in the domain
wall, solving the Lagrange-Euler equations [13-20]. In particular, the stability of
the linear structure of the APB, its transformation to the rotational structure and the
corresponding phase diagram were worked out. This transformation to the rotational
structure represents the nucleation of the orientational domain in the centre of the
APB and the splitting of the APB into two FDWs.

In this paper the properties of the ApBs in Hg,Br, and KSCN are studied
theoretically. The model and the peneral formulac for the angle-dependent free
energy and for the thickness of the APB as well as the stress components are derived
in sections 2-5. The results are applied to Hg,Br, and KSCN in section 6 and
section 7, respectively.

2, Free energy
We consider the free-energy density expansion appropriate to the description of the
improper ferroelectric phase transitions in Hg,Br, [21} and KSCN [29] driven by the
two-component order parameter p, g. Up to the terms of the fourth order, one can
write

f=f0+fc+fe+fg (1)
where
fo=3a(@+ A+ 18P -V +P’¢ a=NT-T) (2a)
represents the free energy containing the primary order parameter only,

fo= 0P+ W+ u) + L(0" - P)us + K0P+ ¢Plus (D)

is the free energy of the coupling between the primary order parameter and the
strain,

Jo = 3len(u] + u3) + ea31d + coq(ud + uf) + coertl + 2eppuyuy + 2eg3(uy + uy)u;]
{2c)

is the elastic part of the free energy and

fy=16i{(3:0)* + (8,p)" + (8,0)* + (8,9)"] + 10,(8,p8,p— 8,qB,q)  (2d)

is the gradijent term. The strain components u; and the elastic constants c;; are
written in the Voigt notation: ze =1, yy =2, 22 =3, yz = 4, 2z = 5, zy = 6.

They are referred to the tetragonal coordinate system x, y, z shown in figure 1(b).
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Figure 1. (@) Tetragonal unit cell of HgaCly. (b) z, y are the tetragonal axes; ¢ is the
normal to the APB plane; i represents the APB plane. The shear strain of the ferroelastic
domains 1 and 2 is also shown. (¢) The microscopic structure of the [010] APB which is
parallel to the FDw.

Since we shall study the walls parallel to the z axis but otherwise arbitrarily
oriented, it is convenient to rewrite the strain tensor components and the elastic
constants with respect to the coordinate system ¢, 5, z (figure 1(b)), rotated through
the angle ¢ around the z axis. The form of f; remains unchanged while the gradient
terms, the coupling and the elastic free-energy terms are as follows:

fo=19.[03:p)* + (8,91 + 19_[(8,2)* + (8:9)] (24"
where g, = g; + g, sin(2¢) and g_ = g, — g, sin(2¢);

fo= (U P+ 1)l + (1L p* + U gP)ub + i cos(2¢) (p* — g% uf + 15(p? + ¢*)uh

(2bh
where I, = If £ I{sin(2¢);
fo = HARUP + uf) + Agguf + Ay (uf + ul?) + Aggud + 2A;ufuh
+ 2A455(uy + up)ug + 24 ug(ug — u)]. (2c")

The elastic constants A;; and the strain components u} are now written in the Voigt

notation, referred to the ¢, »# and z axes, ie. {( =1, gy =2, 22 = 3, nz = 4,
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{z =5, {n = 6. The matrix of the elastic constants has the form
Ay Ap A 0 0 -Ag
A Ay A 0 0 Ay
_ 1 An A Ay 00O 0
ij = 0 0 0 A, O 0
0 0 0 ¢ Ay 0
—Ag Ay 0 0 0 Ags

with
Ap = %[(cll — ¢13 — 2¢g5) cOS(4) + 3¢y + e + 2c45]
Az = (e — €1y + 2eg6) cos(4¢) + 3eyp + €15 — 2044

Ags = Hl(en — ey + 2¢6) 05(49) + ¢y — 1 + 2¢6g) ®)
Alﬁ = -}(c" —Cia — 2C66)Sin(4¢)
Ay = €y Ay = ¢33 A = e

For use in the following we write the formula of the determinant A of the 4 x 4
matrix, obtained by skipping the fourth and the fifth rows and columns in A4,;,:

A = [Agl( Ay — Agp) — 2‘4%6]{‘433("411 + Ap) - 2A?3]
= cgs( ey — e1a)less(ey + epp) — 2¢t] )

and the determinant A’ of the 2 x 2 matrix, when skipping rows and columns with
numbers 2, 3, 4 and 5:

A''= ApAg— Al = cpices + (e + epp)(ey — ey — 2c) sin’(2¢). (5)

3. Equilibrium conditions

We shall study a quasi-one-dimensional wall parallel to the 7n-z plane and
perpendicular to the ¢ axis. The wall is represented by the # axis in figure 1(b),
its orientation is characterized by the single angle ¢ and all quantities depend on the
coordinate ¢ only. Such a quasi-one-dimensional system is an example of a layered
structure, and the equilibrium conditions [5] can be written in the simplified form
[22]

(8/8¢)(8f/@p;)—8f/op=0 (6a)
(8/8¢)(8f[8q;)—8f/8q=0 (6)
oy =o5=o05=0. (6¢)

The stress components o}, referred to the ¢, n, z coordinate system, are

o, =a8ffoul  i=1,...,6. ()
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The stresses o3, o3 and o) are in principle non-zero and can be calculated
from equation (7). The non-zero stress components are the consequences of the
compatibility conditions of the strain, which must be fulfilled in a defectless crystal.
In our layered system the deformations uf, u; and v should be constant over all the
space [22]:

u({) =u(0)  uws({) =wzloo)  ug({) = ui(eo). @)

Equations (6¢) claim that the system can relax along the ¢ direction until the stresses
o}, o5 and of are zero. Simultaneously, in order to keep the strains u), u} and u}
in the n—2 planes constant (independent of their positions {) according to equations
(8), the non-zero stresses o4, o4 and of must be imposed at the crystal surface.

4. Homogeneous phase

In the homogoneous crystal all stresses are zero and the system of equations (6)—(8)
gives the spontaneous homogeneous deformations

uy, = L(p? + ¢2) Iy = ~(1/A)(Hess — Beys) (e — e12) Ces

Upe = Uy

Uz = Es(Pz + Qsz) ly= —(1/a) (e + c2) — 21’1"13](""11 — ¢12)¢C6 (&)
Ugs = la(?§ - 93) lg = =I5/ cg

Uy = Ugg = 0

where the spontaneous values p, and g, minimize the reduced free energy

f =3P’ + @)+ 1000* + ¢°) + 3797 (10a)
with

B=p —4A (105)

y=9 - —4A - 18] cg) (10c)
and

A= 1P(sy + s12) + 25515 + 1555/2 + I 565/ 2. (104)

The reduced free energy (102) was derived from equation (1) eliminating the strains
by means of equations (7).
Below T, t < 0, and assuming that

v>8>0 (11)
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the four stable domain states are

ug = ~lgpj (12a)
1p:p, = +pp g, =0
2, :p, = q=+p
L ug = +1g0} (125)
2:p,=0 2% =—py

where p, = +/—a/B. The spontaneous shear strain wu in (12) indicates the
macroscopic difference between the ferroelastic domain states 1 and 2. The structures
corresponding to the domain states with equal shear (e.g. equation (124)) are mutually
shifted by a primitive vector [21,30] of the high-symmetry phase and distinguished by
the subscript. The free-energy density of the Jow-temperature phase equals

Fy = —a?/43. (13)

5. Antiphase boundary

Let us consider the APE perpendicular to the { axis and separating domains 1, and
1,. Then the system of equations (6}—(8) is to be solved with the boundary conditions
p({ = +o0) = —p(¢{ = —c0) = py
9(¢ = +00) = ¢({ = —00) =0.
Far away from the domain wall the crystal is homogeneous and possesses the
spontaneous strains u,, ie. u;{oco} = uy,. The position-independent strains (8)
are
uy({) = vy = A H(f Ay - I§A13)[2A§6 — A An — Ap)]
+ lg[Ass( Ay + Ayp) — 24%5][ A sin(26) 4 A5 005(2¢)] )5
us(¢) = u, = AT -2 A + (A + Ap)I[2A% — Age( Ay — Ap)lp)
ui({)=ul, =0 (15)
The spontaneous values {15} can be calculated from (9) using the rotated axes ¢,
7 and z, or directly from the free energy (1) with its terms written with respect to

the rotated system. The remaining position-dependent strain components, as derived
from equations (6¢), (7) and (1), take the form

uj(¢) = A T[{f Ags + [ Agsin(26) + Ayqc08(29)}}p(()*
+ {11 Ass — Uil Ags Sin(2¢) + Aj6c05(26)}}({)?
+ (AgArz + Alg)us + Agg Azuil
wg(¢) = —A T {Y A + Uil Ase5in(26) + Ay c0s(26)]}p(¢)?
+ {11 A5 — LGl Ass sin(26) + Ay c0s(26)]}¢(¢)?
+ Ajs( Ay + Apluy + A Aus]
ug((‘) =0. (16)

(14)
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Using (7} and taking into account (15) and (16) the formulae for the non-zero and
position-dependent stresses read

75(¢) = [p(¢)? — pEl[by + by sin(26)1/ A’ + q( )by — by sin(24)]/ A
o3(¢) = [p(0)? — BYI[IA" + byy + by, Sin(2¢) + by sin’(2¢) /A
+ (¢)?[BA’ + by — by, Sin(2¢) + byssin®(2¢) /A

oy(¢) =0 (17a)
where
by = licgs(can — ¢52) by = ~lg(en + er2)(ey — ¢12)/2
by = —111013055 (17b)
by = —lgcis(cyy ~ €pp) [2 byy = —ljcp3(cy — cyp — 2¢46) /2.

The position-dependent order parameter p({), g({) occurring in (16) and (17) is still
not determined, For this purpose we climinate the strains uf making use of (15) and
(16) from the free energy (1) and finally obtain the reduced free energy

f =3P + o) + 3(Bpp* + 8,9%) + 379’ + 39, (8p) + 9-(8,9)7]
(18a)

where we took into account the order parameter is independent of the  axis. The
coefficients in (18z) read

@, =t +2p3[-2AA' + ky + k,sin(2¢) + k;sin®(24)) /A

a, =t +2pj[—2AA’ + ky + k3sin®(2¢)] /A’

B, = B — 20ky + k, Sin(2) + kysin’(2¢) /A’ (18b)
By = B’ — 2[k; — k,sin(2¢) + kysin’(2¢)] /A’

v = = 0 - 20k} + Ky sin®(2¢)] /A

where
ky = [fegs + ey k) = e — Ifey ky = Ulg(eq — cy2)
ky = Il'iz(cu — ¢pp — 2¢q5) — lgz(cu + ¢13)1/2 (18¢c)

Ky = [If(en — €12 — Zegs) + 1§ (eyy + e2)]/2-
The Lagrange-Euler equations (6a) and (6b) with the reduced free energy (18a) are

94 OFcp = c,p+ B,0° + 7' pd

4 w2 (19)
98 g=ca,q+ 8,8 + 7" o’
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Summarizing, the orientation of the APB, perpendicular to ¢, is described by the angle
¢. The position-dependent order parameter in the boundary is represented by the
solution of the differential equations (19) with the boundary conditions (14). The
stresses and deformations in the APE are given by (15), (16), (172) and (6¢).

Taking into account the equality

/B, =B 20)

the simple kink solution of equations (19) and (16) exists:

p(¢) = pytanh(2¢ /dspp)

21
g(¢)=0 @l

where

dapp = 2[(~/29,8)B,] 712 (22)

The thickness d,pp of the APB depends on the angle ¢. The substitution of (21} into
(18a) leads to the formula for the angle-dependent surface free energy:

+oo
oan= [ (0~ £)4 = §|Fildreut, /8. 23)

We shall further consider g, = 0 in accord with the assumptions made for Hg, Br,
and XSCN in sections 6 and 7. Differentiating (23) with respect to the angle ¢ we
obtain the equation determining the extremes of o ,pp:

[sin(2¢) — A][sin(2¢) — B] cos(2¢) = 0 (24a)
where

A = 2eg /(e + ep) B = [—deqycq/(eqy + epp)(eqg — ¢pp — 2¢46)](1/A).
(24b)

In the following analysis we assume that {{ > 0 and If; > 0. The condition of
the positive definite elastic free emergy (2¢) requires the non-zero efastic constants
;s 4, § = L,...,6, to be positive and ¢yy ~ ¢, > 0. If we make use of this,
the analysis of the extremes given by equation (24g) yields the results shown in
tables 1 and 2. Note that B < 0 for ¢;; — ¢15 — 2c¢ > 0 (table 1} and B > 0 for
c1— €12 —2¢g6 < 0 (table 2). If 0 < A < 1 (see tables 1 and 2), then there exist two
minima ¢, = Iz + ($sin™! A —1x) and the uniaxial stress o, which is parallel to
the APB plane, is zero over all the space. A similar result, except for a factor of 2,
was obtained earlier [10] considering the two-dimensional deformations. If moreover
0> B > —1 (table 1), an additional metastable minimum at —1x appears.

For A > 1and B < 0 (table 1) the single absolute minimum of o,pp at the
crystallographic value ¢, = i exists. For this angle the stress o given by equation
(17a) possesses its lowest, but non-zero absolute value,

For A > 1 and B > 0, two cases can occur. If B > 1 (table 2) the free
energy has its lowest value at ¢, = in. If 0 < B < 1, the two degenerate
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Table 1. cy1 — ¢12 — cg6/2 > 0 (B < 0). ami = absolute minimum; mmi = metastable
mipimum; Mmax = maximum.

0<AKI A>1
ami  $p = w4+ (] arcsin A~ w0 /4) oh =10 dr=nf4 oh #0
B<L-1 0>B>-1 B<~1 0> B>-1
mmi _ —1l'/4 — —1r/4
max —w/4 —m /4 (} arcsin B + 7 /4); —mf4 ~mf4 £ (} arcsin B + w /4)
+x/4 -x/4

Table 2. ¢11 — ¢ — ¢/2 < 0 (B > 0). In the interval 2-1/A > B (> 0)
schematically shown in the last row, the lowest magnitude of o) does not correspond to
the minimum free energy.

A>1
0L AL
B>1 B>1 I1>B>0
ami ¢*=ﬂ/4i(%arcsinA—1r/4) 1 = wf4 ¢¢=1r/4:!:(%arcsinB—1rf4)
oy =0 ol #0 ol #0
max —wf4 and +mf4 —mf4 —w/4 and nf4

B>2-1/A 2-1/A> B

minima of the free energy at ¢, = iv % (%sin'I B - i—rr) appear. The stress
o) is non-zero in the whole interval A > 1, B > (. Nevertheless, analysing
equatlon (172) one can find that the lowest magnitude of o occurs at the angle
¢, = im (ie. at the angle of the minimum o,pp) for B > 2 - 1/A(> 1). For
2- 1/A > B(> 0) the magnitude of the component o) becomes lowest at the
angles ¢, = in & {%sin"l[A(l — /1= B/A)] — }x}, which do not correspond to
the minimum free energy.

It is worthwhile pointing out that the only z-dependent quantity is o} (equation
(172)), while the remaining expressions o5 and (182)-(24b) involve the x-y plane
only. This means that by imposing the appropriate stress ¢j along the z axis we
effectively deal with two-dimensional deformations. The inhomogeneous stresses o)
and of must be imposed around the APB plane to sustain the quasi-one-dimensional
structure [5, 6] of the wall.

The temperature-dependent coefficients I and [f result in the temperature
dependence of the APB orientation. They were proposed to originate from the higher-
order terms of the free-energy expansion [10]. On the assumption of an increase in A
from 0 to 1 with increasing temperature {10], the two minima ¢, and ¢_ gradually
approach %w. When A > 1 and B > 1, the APB is locked at the crystallographic
orientation 1 17 Nevertheless, for ¢;; — ¢y — 066/ 2 < 0 (table 2) a further increase in
A decreases B (24b) until B < 1. In this reglon contrary to the assumption in [10],
the APB is no longer locked at the angle 1 $7, but two degenerate minima of the free
energy with non-zero o; appear at ¢, and ¢_.

So far we have studied the linear APB (21), which is not always stable. If we make
use of the result of Bullbich and Gufan [20], the linear structure (21} is unstable,
when
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h(¢) = (o, /a,) {49/[(1 + 89" /8,)!/? 1]} -1>0 (25)

where g = g /g . Then the linear structure transforms into the rotational structure
characterized by the non-zero order parameter component g in the APB centre. The
rotational structure corresponds to the nucleation of the ferroelastic domain 2, (or
2,) with the shear strain u, = +I.gZ, where g, is the value of the order parameter
component g in the centre of the APB (see (12b)). In our case, where the free energy
has been expanded up to the fourth order, the instability of the linear structure leads
to complete splitting of the APB into two FDWs [19].

6. Antiphase boundary in Hg,Br,

The tetragonal high-temperature phase (space group, D}! (I14/mmm)) of Hg,Br,
is built up from the linear Br-Hg-Hpg-Br molecules arranged in chains, which
are paralle] to the z axis. Such a body-centred structure is strongly anisotropic
(figure lga)). The phase transition [21] at 143 X to the orthorhombic phase (space
group, D7 (C'mem)) is induced by the transverse acoustic soft modes at the two non-
equivalent X points of the Brillouin zone: X, = (1a,1¢,0) and X, = (}a,-14,0).
It is accompanied by the antiferrodistortive displacements of the mass centres of
molecules in the [110] and [110] directions (figure 1). The linear APB structure is
schematically shown in figure 1(c) for the (010) APB plane (¢ = 90°) [25] The
cocflicients of the free energy (1) were deduced from the acoustic measurements
[23], and from the temperature dependence of the soft-mode frequency and the
linear thermal expansion coefficients [24] (table 3). The coupling constant g; was
estimated as [23] ¢} =~ (g? - g%)g,,, where g, represents the coefficient of the
gradient term along the = direction and g, was assumed to be zero. The elastic
constants determined by acoustic measurements [26] are

¢y =16.6GPa ¢, =1500GPa 5 = 18.88GPa
33 =8885GPa ¢ =11.1I9GPa ¢, = 7.446GPa.

With these values, 0 < A < 1 and B < -1 (table 1). The APB with the minimum
free energy is oriented at the angles ¢_ = 15.4° and ¢, = 90° — 15.4° = 74.6°,
which are close to the angles of the FDws (100} (¢ = 0°) and (010) (¢ = 90°). The
values ¢, and ¢_ represent the only orientations at which the stress component o
is equal to zero. The angular dependences of the surface free energy o,ppg and the
APB thickness d,pg are shown in figure 2 for T, — T = 5 K. The position-dependent
stress components o4({) and of({) at the angles —45°, 45° and ¢, (extremes of
the free energy) are plotted in figures 3(a) and 3(b), respectively. The angular
dependence of the stresses ¢5(0) and o4(0) at the centre of the APB are plotted
in figure 4. The free energies, the APB thicknesses and the stresses at the angles
of the free-energy extremes are given in table 4. The thickness d,,p changes with
the angle from 70 lattice constants at ¢, to 40 lattice constants at —45°. Since the
function h(¢) in equation (25) is positive for all angles, the linear APB structure is
always unstable. In spite of this the above analysis of the linear structure gives us
an analytically tractable example of the APB, and its characteristics can be compared
with the boundaries in other crystals, particularly in KSCN discussed in section 7.



APBs in Fg,Br, and KSCN 1465

It should be mentioned that the stability of the linear structure depends [27] on the
value of the coupling coefficient (+'—3'}/2 between the order parameter components
p and g (see equation (24)). For the other physical properties of the linear APE this
coupling is irrelevant,

0.032 400
. . (n)

[Angstrimi

0.026
{2
I )
P, ;
2
= Figure 2. (@) The angular dependence
of the free energy oapg(¢) and the
thickness dapp(¢) in HgzBry, (&) The
length of the radius vector represents
-0'028,025 i o " o026  the value of the free energy oapp(¢)
ferg/em’ in Hg;Brz.

Table 3. Coefiicients of the free energy for Hg;Br, (a) values according to Lemanov et
al [23], (b) values according to Barta er af [24].

@ 12/ e i2/s vy =818 B [\f(Ag})
(I m—3) (T m=3 (T m-% — (K1/2 J-1)
1.43x 10° 2.5 x 10° 2.8 x 10° ~1 2.8 x 102
() gv AV v sV
™ gk (m=%) ( m%)

2.006 x 10% 22,3 x 10-7 120 x 10~% 1.49 x 10—

It is also interesting to estimate the share of the free energy arising from the
inhomogeneous strain. If the APB is cut into thin slices perpendicular to the ¢
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Figure 3. (a) The position-dependent stress
component o5({} for three angles correspond-
ing to extremat values of the free energy in
— Hg,Br,. (b) The position-dependent stress com-

0 250 30D ponent o4({) for three angies corresponding to

¢ [Angstrom! extremal values of the free energy in HgsBra.

500 -250

)

g g

e

.

s

o

U : : ; ‘

. . Figure 4. The stress components o4(0) and o3(0)
-8 ] ; : — in the centre of the AP versus the angle ¢. The
-180 -30 0 90 180 aps with the minimum free energy possesses the
# [dezree] zero ¢ component (shown by arrows).

axis and each of them are allowed to deform freely (i.e. neighbouring layers need
not match each other and the compatability conditions (8) are not operating), the
homogeneous part of the free energy (18a) should be replaced with (10a). The value
of the free energy is then 0.01784 erg cm™2. Consequently, for the orientation ¢,
around 0% (less than 0.005%) of the free energy has a mechanical origin, while it is
42% for the angle —3n.
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Table 4. The free energies, APB thicknesses and the stresses at several angles.

Agle  aarp 7%(0) o0 dams

(deg)  (ergem=2)  (MPa) (MP3) (L)
P+ 0.01785 0.0 -03 327
45 0.620 2.2 1.0 296

—-45 0.031 =6.7 ~4.4 185

7. Antiphase boundaries in KSCN

The KSCN crystal has a body-centred tetragonal structure of the high-temperature
phase with the space group D18 (I4/mem) and two molecules in the unit cell. The
structure is built up from layers which are perpendicular to the 2 axis. These layers
contain the orientationally disordered SCN~ dipoles (lying in the layers) and alternate
with fayers of Kt ions. The phase transition at 414 K is connected with the head—tail
antiparallel ordering of SCN~ dipoles [28], resuiting in a doubling of the primitive
cell and a reduction in the symmetry to the DI} ( Pbem) space group [29]. The
tetragonal structure is depicted in figure 5{(b) and the linear APB is schematically
shown [30] in figare 5(c). In the =z, y coordinate system, which is rotated through 45°
with respect to the tetragonal x’, 3 axis used in other papers [29-31], the results in
section 5 are directly applicable. The elastic constants calculated from the ultrasonic
measurements are [33]

o = 25.70GPa ¢z = 18.70GPa ¢z = 2.50GPa
c33 = 19.00GPa ¢ = 31.20GPa cyy = 4.00GPa,

Figure 5. (2} z', y' ate the natural tetragonal axes of KSCN; x, y are the tetragonal
axes used in this paper; ¢ is the normal to the APB plane. The spontaneous shear strain
is also shown. (b) The tetragonal unit celf of KSCN. The open and full circles represent
K* ions; the full and broken lines represent SCN— groups. (¢) The structure of the
[110] (referred to z, y axes) APB, which makes an angle of 45° with the FEWw.
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The coefficients of the free energy (1) (table 5) can be estimated within the
compressible pseudo-spin model [32], expanding the mean-field free energy up to the
fourth order. The coefficients i}, I, I; and 3’ were calculated using the results of the
acoustic measurements [33]. For the value of A the formula A = 4kg/V has been
used, where kg is the Boltzmann constant and V' is the volume of the orthorhombic
cell [32]. The coeflicient g; of the gradient term was determined from the correlation
length measured by diffuse neutron scattering {34] and the coefficient g, was assumed
to be zero. The expansion coefficients are collected in table 5.

Table 5. The free energy expansion coefficients of KSCN.

TR 7 7 4
(MPa) (MPa) (MPa) (MPa K~1) (MPa) (MPa) T Y
193.31 25575 —84.24 0.08 11.23 45 1.76 x 10~

In the following we comsider T = T, — 5 K at which p; == 0.46. Note that
the magnitude of the stresses (172) is proportional to the value pZ. The angular
dependences of the free energy o,pp and the wall thickness d,pp are plotted in
figure 6. The position-dependent stress components o5({) and o3({) at the angles
—45°, 45° and ¢, are shown in figures 7(a) and 7(b), respectively, and the stresses
045(0) and 3(0) at the boundary centre versus the angle ¢ are depicted in figure 8.
The values of the free energy, the APB thickness and stresses at several angles are
(see the text below) given in table 6.

Table 6. Free energies, APB thicknesses and stresses at several angles.

Angle  oapp o (0)  o3(0)  dae

{deg) (ergem=%) (MPa) (MPa) (4)
éx 04642 ~137  ~6L71 263
$. 04646 -133 6169 262
45 0.48 —406 632 25.4

—45 0.55 -771  —653 224

Since A > 1 and 0 < B < 1 (table 2) the APB with the lowest free energy
can have two orientations ¢, = 11.9° and ¢_ = 78.1°, while the orientations
with the lowest magnitude of the stress o} are ¢, = 6.0° and ¢_ = 84.0°. The
anisotropy of the free energy is lower than for Hg,Br,, but its value is more than
ten times higher (figures 2 and 6). From figure 6(a), one can also expect the APB
orientation to be symmetrically distributed around 45°, while the angies from the
interval (—90°, 0°) correspond to the higher values of the free energy. This agrees
with the dominant 45° direction observed in the etched pattern [31,35). The stress
o% varies with the angle from 13 to 77 MPa, not going to zero. The component o}
varies only slightly from 62 to 65 MPa (figure 8, see for comparison figure 4). The
APB i§ strongly strained. One can estimate the part of the free energy corresponding
to inhomogeneous deformations in a similar way to Hg,Br,. For the angles ¢, 55%
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-180 -390 0 90 180
# [degree]
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& d
5
- Figure 6. (a) The angular dependence
of the free encrgy oapp(¢) and the
: thickness dapg(¢) in KSCN. (b) The
0.5 ; . length of the radius vector represents
205 0 0.5 the value of the free encrgy oapp(9)
lerg/em? in KSCN.
of the total free energy has a mechanical origin. For ¢ = —%w the corresponding

percentage is 62%. The thickness of the APB is about four lattice constants and
depends only weakly on the angle. Since the function h(¢) is negative at all angles,
the lincar APB structure is always stable.

8. Discussion

We have theoretically studied the properties of APBs in improper ferroelastics with
tetragonal-to-orthorhombic phase transitions. The APBs were considered to be quasi-
one dimensional and parallel to the tetragonal z» axis but otherwise arbitrarily
oriented. The expressions for the angular dependence of the free energy (23),
the thickness (22) and the stresses (17) were derived in the framework of the
phenomenological approach. The APE with the minimum free energy can be oriented
at two angles ¢, and ¢_ = 90° — ¢ given by the formulae in tables 1 and 2. If the
quantity A < 1, then only the non-zero stress component in such an APB is o, ,. If
A > 1, the uniaxial inhomogeneous stresses o, and o,,, which are parallel to the
wall piane, must be imposed even around the APB with minimum energy to sustain
its quasi-one-dimensional structure.

Using the free-energy expansion coefficients evaluated from experimental data
it was shown that the linear boundary structure in Hg,Br, is unstable for all APB
orientations. In spite of this instability, which mainly depends on the coupling
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Figure 7. (2) The position-dependent stress
component o4(¢) for three angles correspond-
ing to extremal values of the free energy in
KSCN. (&) The position-dependent stress com-
ponent o3({) for three angles corresponding to
extremal values of the free energy in KSCN. It
depends only slightly on the angle.

Figure 8. The stress components o7(0) and
m ¢3(0) versus ¢ in the centre of the APe.
The APB has the minimum enerpy at 11.9°
(78.1°) (shown by arrows in figure 6(a)). The

1 : : : component o5 (always non-zero) possesses

-390 . oty . . ; T —70 its lowest magnitude at the angles 6° (or
-180 -80 0 g0 . 180 84°);, see also figures 3(a) and 4 for
# Tdegree] comparison.

coefficient (v — 5’} /2 between the order parameter components p and g (table 3)
[23,27], we have calculated the angle-dependent properties of the analytically tractable
linear APB structure. The boundary with the minimum free energy is tilted through
about 15° (or about 75°) with respect to the FDW and the stress component o5
(= o,,) becomes zero.

In KSCN the linear APB is stable for all orientations. Contrary to Hg,Br, the
stress component o is non-zero even in the APB with the minimum free energy tilted
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through about 12° (or about 78°) with respect to the FDW. The magnitude of o
near the transition temperature varies between 13 and 77 MPa and the stress o} is
about 60 MPa. It is interesting to compare the increase in the free energy due to
the inhomogeneous strains in the APBs. In Hg,Br, it represents from 0% to 42% of
the total free energy, depending on the APB orientation. In KSCN it is 55% even for
the APB with the minimum free energy. These ratios are temperature independent,
contrary to the values of the free energy and of the stresses. From the angular
dependence of the free energy in figure 2(a), one expects the orientations of the APBs
in the interval (0°, 90°). This s in agreement with experiment [31,35].

Note that we have assumed that g, < g, in both materials under consideration.
Nevertheless, the coefficient g, has not been determined from experiment up to
now and its non-zero value could modify our numerical results to some extent. The
properties of the APBs without the assumption of the quasi-one-dimensional structure
of the wall remain also an open question.
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