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Antiphase boundaries in H&Br2 and KSCN 

I Rychetskyt and W Schranz 
Instilut Er Fxpnimentalphysik, Univenitlt Wien, Stdlhofgasze 4, 1090-Wien, Austria 

Received 24 September 1992 in final form 3 December 1992 

Abstrnet. The angular dependences of the free energy, thickness and streSFeS are 
calculaled for the anliphase boundaries (APLB) parallel to the letragonal z axis but 
othenvise arbitrarily orienled. The general mulls are applied to HgzBrz and KSCN. 
The APE in the former case is shown to decay inlo two ferrwlaslic domain walk, while 
it is stable in KSCN. High stresses oculr around the APE in KSCN and more than 50% 
of the free energy originales from lhe inhomogeneous strain in the wall. The obselved 
elched patterns in KSCN are discussed. 

- 
1. Introduction 

The orientations of coherent ferroelastic domain walls (FDWS) in femelastic crystals 
are fully determined by the different spontaneous deformations of both domains 
separated by the wall [1,2]. Even if the domains perfectly match at the coherent 
mw, the gradually changing structure giving rise to the inhomogeneous strains results 
in the appearance of stresses in the FDW and an increase in the wall energy. In 
the framework of the Landau-Ginzburg phenomenological approach characteristics 
of the mws-the thickness and the surface energy-were studied in the peromkite 
crystal BaTiO, [3,4], which undergoes an improper ferroelastic proper ferroelectric 
phase transition. Recently a complex and consistent analysis of the domain walls 
in the improper ferroelastic permkite crystal SrTiO, was performed [5,6]. It was 
shown that the usual assumption of the quasi-one-dimensional wall structure requires 
an appropriare distribution of the surface forces around the domain wall [5,6]. The 
known empirical values of the freeenergy expansion coefficients for the SrTiO, crystal 
made the numerical estimation of the FDW characteristics possible. 

Contrary to mws, the orientation of a non-ferroelastic domain wall (non-mw) 
is not determined by the spontaneous deformation, since it is the same in both 
domains separated by the wall. Instead, the anisotropy of the crystal structure 
and the inhomogeneous strains in the wall [SI as well as the induced electric 
depolarization field [7l play an important role. The 180° ferroelectric domain wall 
in barium titanate [3] and the antiphase boundaries (APBS) in strontium titanate [SI, 
which belong to the non-FDWs, were studied with respect to their crystallographic 
orientations. Their equilibrium structure was assumed to be linear (Ising type) and 
was described as a simple kink The angle-dependent free energy and the thickness 
of the 180° ferroelectric domain walls were calculated for BaTiO, [SI and TGS 191. 

t Permanent a d d m  lnslilute of Physics, Czechoslovak Academy of Sciences, Na Slovance ‘2, 18040 
Prague, Cmhalwakia. 
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The results obtained were in qualitative agreement with the observed orientational 
anisotropy. Considering the deformations of the crystal in two dimensions only, 
the temperature-dependent orientation of the stress-free APB in the orthorhombic 
improper ferroelastics, e.g. Gd,(MoOJ3, was calculated [IO] and found to be in good 
agreement with experiments [ll, 121. 

Several workers calculated the position-dependent order parameter in the domain 
wall, solving the Lagrange-Euler equations [13-20]. In particular, the stability of 
the linear structure of the APB, its transformation to the rotational structure and the 
corresponding phase diagram were worked out. This transformation to the rotational 
structure represents the nucleation of the orientational domain in the Centre of the 
APB and the splitting of the APB into two FDWS. 

In this paper the properties of the APBS in Hg2Br2 and KSCN are studied 
theoretically. The model and the general formulae for the angle-dependent free 
energy and for the thickness of the APB as well as the stress components are derived 
in sections 2-5. The results are applied to Hg,Br, and KSCN in section 6 and 
section 7, respectively. 

I Rycheaky and W Schranz 

2. kee energy 

We consider the freeenergy density expansion appropriate to the description of the 
improper ferroelectric phase transitions in Hg,Br, [21] and KSCN 1291 driven by the 
two-component order parameter p ,  q. Up to the terms of the fourth order, one can 
write 

f = fo + f c  + fe t fg (1) 

where 

f" = 4a(pZ t 2, t i P ' ( P 2  - 4 2 ) 2  + f y 'p22  Q = X(T - T,) (24 
represents the free energy containing the primary order parameter only, 

fc = w t $)(U1 + "2) + G ( P 2  - q2)U6  + U P Z  + 4 2 h 3  (26) 

is the free energy of the coupling between the primary order parameter and the 
strain, 

1 2 2  2 f, = Z[ClI("l t U,) + %3"3 t .,(U: + "3 t c66u:+ 2C12"1"2 + 2 C d U 1  t "2)"31 

(2) 

is the elastic part of the free energy and 

fg = 4Si[(%PY t (a,P)2 t (add2 + (ayd21 t lL(a,PayP- a&ay4) (2) 

is the gradient term. The strain components ui and the elastic constants cij are 
written in the Voigt notation: zz = 1, yy = 2, zx = 3, yz = 4, zz = 5, zy = 6. 
They are referred to the tetragonal coordinate system 2, y, z shown in figure I@). 
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x 

FLgure 1. [a) "agonal unit cell of Hg2C12. [b) 2, y are the tetragonal axa; C is the 
normal to the APE plane; 9 represents the APE plane. me shear strain of the fermelastic 
domains 1 and 2 is also shown. (e) m e  mic-pic slruclure of lhe [OlO] APB which is 
parallel to the mw. 

Since we shall study the walls parallel to the z axis but otherwise arbitrarily 
oriented, it is convenient to rewrite the strain tensor components and the elastic 
constants with respect to the coordinate system C, q, z (figure l(b)),  rotated through 
the angle 4 around the z axis. The form of fo remains unchanged while the gradient 
terms, the coupling and the elastic free-energy terms are as follows: 

fs = fg+[(qP)Z + (aqdZ1 + 4s- [ ( 8 , P ) 2  + (a,d21 ( 2 4  

where g+ = gi + g,sin(24) and g- = gi - ga sin(2q5); 

f, = (1;Pz + 1 w u ;  + ( L P Z  + z;42)Uk + 16cos(24) (PZ - ?)U; + l;(PZ + &U; 
(26') 

where 1, = 1; f 1; sin( 24); 

f, = f [AI1(uf  + U:) + A33~;Z + + U:) + A , , u ~  + 2Al2u;u; 

+ 2A13(~; + U;).; + 2A16Ub(U; - U:)]. (W 
The elastic constants Aii and the strain components U: are now written in the Voigt 
notation, referred to the C, q and z axes, i.e. CC = 1, qq = 2, zz = 3, qz = 4, 



and the determinant A’ of the 2 x 2 matrix, when skipping rows and columns with 
numbers 2, 3, 4 and 5 

A’ = A11A66 - A:, = c11c66 + $(Cll t C12)(C11 - C12 -2c,g)Sin2(24). (5) 

3. Equilibrium conditions 

We shall study a quasi-one-dimensional wall parallel to the q-z plane and 
perpendicular to the C axis. The wall is represented by the q axis in figure l(b), 
its orientation is characterized by the single angle 4 and all quantities depend on the 
coordinate C only. Such a quasi-one-dimensional system is an example of a layered 
structure, and the equilibrium conditions [SI can be written in the simplified form 
[221 

(a/aCw/apc) - af/ap = 0 

(a/ao(af/anc) - af/aq = 0 

U; = U; = U; = a. 
(a) 
(W 

The stress components U;,  referred to the C, q, z coordinate system, are 

4 = af/au: i = 1,. . . ,6 .  (7) 
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The stresses U;, 4 and d4 are in principle non-zero and can be calculated 
from equation (7). The non-zero stress components are the consequences of the 
compatibility conditions of the strain, which must be fulfilled in a defectless crystal. 
In our layered system the deformations U;, U: and U: should be constant over all the 
space [22]: 

4 ( C )  = U:(..) .;(Cl = Uj(o3) U X C )  = U$(..). (8) 

Equations (6c) claim that the system can relax along the C direction until the stresses 
dl, ds and d6 are zero. Simultaneously, in order to keep the strains U;, U; and U: 
in the q-z planes constant (independent of their positions C) according to equations 
(S), the non-Zen, stresses U;, 4 and U: must be imposed at the crystal surface. 

- 
4. Homogeneous phase 

In the homogoneous crystal all Stresses are zero and the system of equations (6)-(8) 
gives the spontaneous homogeneous deformations 

Uls = ‘l(d + $1 ‘ I  = -(1/A)(’ic33- l$c13)(c11 - c12)c66 

U l s  = UI% 

% = &(P: + 9:) 

U,, = USE = 0 

I3 = -(l/A)[’:(cl, + c12) -2~~c131(c11 - C12)c66 (9) 

= ‘ 6 ( d  - d )  ‘6 = -‘:/‘a6 

where the spontaneous values p ,  and q, minimize the reduced free enera 

with 

and 

A = I{’(S11+ 812) + U;~;SI~  + li2s33/2 + l f ~ , , / 2 .  (W 

The reduced free energy (loa) was derived from equation (1) eliminating the strains 
by means of equations (7). 

Below T,, t < 0, and assuming that 
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the four stable domain states are 

I Qchetsb  and W Schram 

where p ,  = m. The spontaneous shear strain u6s in (12) indicates the 
macroscopic difference between the fernelastic domain states 1 and 2. The structures 
corresponding to the domain states with equal shear (e.g. equation (12)) are mutual@ 
shifted by a primitive vector 121,301 of the high-symmetry phase and distinguished by 
the subscript. The freeenergy density of the low-temperature phase equals 

Fo = -a2/4,8. (13) 

5. Antiphase boundary 

Let us consider the APB perpendicular to the 5 axis and separating domains 1, and 
1,. Then the system of equations (6)-(8) is to be solved with the boundary conditions 

u;(c) = 0. 
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Using (7) and taking into account (15) and (16) the formulae for the non-zero and 
position-dependent stresses read 

4 1  = z~c66(c11 - c lZ)  b2Z = -z6(cll + c12)(c11 - c12)/2 

'31 = -';c13c66 (174 

632 = -~6c13(c11 - % ) / 2  '33 = -z~c13(c11 - cl2 - 2c66)/2. 

The positiondependent order parameter p(C),  q(C) occurring in (16) and (17) is still 
not determined. For this purpose we eliminate the strains U: making use of (15) and 
(16) from the free energy (1) and finally obtain the reduced free energy 

f = t 0L,q2) + 3 4 P 4  t P,n4) + ir'dq2+ li[g+(qP)2 f s-(qq)21 

(W 
where we took into amun t  the order parameter is independent of the 17 axis. The 
coefficients in (I&) read 

op = t + 2p:[-2Ahf + k, + kzsin(2'$) + k3sinz(2'$)]/A' 

01, = t + 2p:[-2AA' + kl + k3sin2(2+)]/A' 

Pp = 0'- 2[kI + kZ~in(2+) + k3sin2(2+)/A' 

P, = P'-2[k1 - kZ~in(24) + k3sin2(2+)]/A' 

7* = 7' - 0' - 2[ki + k; sinz(2+)]/A' 

where 



1462 

Summarizing, the orientation of the APB, perpendicular to C, is described by the angle 
4. The position-dependent order parameter in the boundary is represented by the 
solution of the differential equations (19) with the boundary conditions (14). The 
stresses and deformations in the APB are given by (U), (16), (17a) and (6c). 

I Rychefsky and W Schranz 

Tdking into a m u n t  the equality 

ap/P, = a/P (20) 

the simple kink solution of equations (19) and (16) exists: 

dAPB = 2[(-~/2g+p)pp]-”2. (22) 

The thichess dApB of the APB depends on the angle 4. The substitution of (21) into 
(18a) leads to the formula for the angle-dependent surface free energy: 

We shall further consider g, = 0 in accord with the assumptions made for Hg,Br, 
and KSCN in sections 6 and 7. Differentiating (23) with respect to the angle 4 we 
obtain the equation determining the extremes of uMB: 

[sin(24) - A][sin(24) - B] cos(24) = 0 ( 2 W  

where 

A = 2L;c66/zk(c,l + CIZ) B = [-4c11c66/(cII + c12)(‘31 - ‘42 - 2c66)l(l/A)- 

(246) 

In the foUoWing analysis we assume that 1; > 0 and 16 > 0. The condition of 
the positive definite elastic free energy (a) requires the non-zero elastic constans 
ci j ,  2, = 1,. . . ,6, to be positive and cI1 - cI2 > 0. If we make use of this, 
the analysis of the extremes given by equation (24a) yields the results shown in 
tables 1 and 2. Note that B < 0 for cI1 - clz - 2c66 > 0 (table 1) and B > 0 for 
ell - c12 - 2 ~ ~ ~  < 0 (table 2). If 0 < A < 1 (see tables 1 and 2), then there exist two 
minima = ir f ( 4  sin-’ A - fr)  and the uniaxial stress m;, which is parallel to 
the APB plane, is zero over all the space. A similar result, except for a factor of 2, 
was obtained earlier [lo] considering the two-dimensional deformations. If moreover 
0 > B > -1 (table l), an additional metastable minimum at -$r appears. 

For A > 1 and B < 0 (table 1) the single absolute minimum of uApB at the 
crystallographic value & = $r exists. For this angle the stress m i  given by equation 
(17a) possesses its lowest, but non-zero absolute value. 

For A > 1 and B > 0, two cases can occur. If B > 1 (table 2) the free 
energy has its lowest value at q5* = +r. If 0 < B < 1, the two degenerate 

. .  
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Table 1. c11 - q z  - =/Z > 0 ( B  < 0). ami = absolute minimum; mmi = metastable 
minimum; max = maximum. 

ami +* = a J 4 i  ( a  arcsin A - nJ4)  a). = 0 + * = ~ 1 4   PO 
B < - 1  O > B > - 1  B < - 1  O > B > - 1  

mmi - -a J4 - -a J4 
max -R/% - u / 4 & ( 4 a m i n B + r r J 4 ) ;  -a14 -rJ4 ?C ( f a m i n  B + R 14) 

+a14 -x/4 

Table2 c ~ ~ - c ~ - c ~ / Z < O ( B > O ) .  I n i h e i n t e r v a l 2 - 1 J A > B ( > O )  
schematically shown in the last mw, the lowest magnitude of U). does not correspond lo 
lhe minimum free energy. 

A > l  
O < A < l  
B > 1  B > 1  1 > B > O  

ami 

max - r J 4  and +xJ4 - R J ~  -n /4  and +xJ4 
B > Z - l J A  l - l / A > B  

+* = ~ / 4 i  (f arcsinA - ~ f 4 )  +* = rJ4 di = z J 4 i  ( f  arcsinB - R J ~ )  
U). = 0 a; # 0 -;#a 

minima of the free energy at $* = $T (fsin-' E - $ x )  appear. The stress 
dz is non-zero in the whole interval A > 1, B > 0. Nevertheless, analysing 
equation ( 1 7 ~ )  one can find that the lowest magnitude of dz occurs at the angle 
$* = $r (Le. at the angle of the minimum umB) for B > 2 - 1/A (> I ) .  For 
2 - l /A > B ( >  0) the magnitude of the component U; becomes lowest at the 
angles Ti = $n f { sin-'[A( 1 - Jm)] - $ x } ,  which do not correspond to 
the minimum free energy. 

It is worthwhile pointing out that the only z-dependent quantity is d3 (equation 
(17a)), while the remaining expressions U; and (1&)-(24b) involve the r-y plane 
only. This means that by imposing the appropriate stress U; along the z axis we 
effectively deal with two-dimensional deformations. The inhomogeneous stresses U; 

and U; must be imposed around the APB plane to sustain the quasi-onedimensional 
structure [S, 61 of the walL 

The temperature-dependent coefficients 1; and I: result in the temperature 
dependence of the APB orientation. They were proposed to originate from the higher- 
order terms of the freeenergy expansion [IO]. On the assumption of an increase in A 
from 0 to 1 with increasing temperature [lo], the two minima d+ and 4- gradually 
approach ax. When A > 1 and B > 1, the M B  is locked at the crystallographic 
orientation $T. Nevertheless, for cll - cIz - ca6/2 < 0 (table 2) a further increase in 
A decreases E (246) until E < 1. In this region, contrary to the assumption in [lo], 
the APB is no longer locked at the angle $T, but two degenerate minima of the free 
energy with non-zero U; appear at q5+ and 4-. 

So far we have studied the linear APB (21), which is not always stable. If we make 
use of the result of Bullbich and Gufan [ZO], the linear structure (21) is unstable, 
when 
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Wq5) = (aq /aJ  {4g/l(l t 8g-f/Pp)112 - 11} - 1 > 0 (25) 

where g = g+ /g-. Then the linear structure transforms into the rotational structure 
characterized by the non-zem order parameter component q in the APB centre. The 
rotational structure corresponds to the nucleation of the ferroelastic domain 2, (or 
&) with the shear strain u6 = +1,& where 4~ is the value of the order parameter 
component q in the centre of the APB (see (126)). In our case, where the free energy 
has been expanded up to the fourth order, the instability of the hear structure leads 
to complete splitting of the APB into two FDWS [19]. 

6. Antiphase boundary in Hg,Br, 

The tetragonal high-temperature phase (space group, DC ( I 4 / m m m ) )  of Hg,Br2 
is built up from the linear Br-Hg-Hg-Br molecules arranged in chains, which 
are parallel to the z axis. Such a body-centred structure is strongly anisotropic 
(figure 19)). The phase transition [21] at 143 K to the orthorhombic phase (space 
group, DA (Cmcm)) is induced by the transvetse acoustic soft modes at the two non- 
equivalent X points of the Brillouin zone: XI I ( !u ,4u ,O)  and X, = ( f u , - $ u , O ) .  
It is accompanied by the antiferrodistortive displacements of the mass centres of 
molecules in the [110] and [ l i O ]  directions (figure 1). The linear APB structure is 
schematically shown in figure l(c) for the (010) APB plane (q5 = 90") [25]. The 
coefficients of the free energy (1) were deduced from the acoustic measuremens 
[Z], and from the temperature dependence of the soft-mode frequency and the 
linear thermal expansion coefficients [24] (table 3). The coupling constant gi was 
estimated as [23] g,! U (g! - g?)g,,, where g+. represents the coefficient of the 
gradient term along the z direction and g, was assumed to be zero. The elastic 
constants determined by acoustic measurements [26] are 

cI1 = 16.6GPa cC2 = 15.00GPa c , ~  = 18.88GPa 

q3 = 88.85GPa cs6 = 11.19GPa c, = 7.446GPa. 

With these values, 0 < A < 1 and B < -1 (table 1). The APE with the minimum 
free energy is oriented at the angles q5- = 15.4O and q5+ = SOo - 15.4O = 74.6O, 
which are close to the angles of the FDWS (100) (q5 = OD) and (010) (q5 = WO). The 
values q5+ and q5- represent the only orientations at which the stress component d2 
is equal to zero. The angular dependences of the surface free energy uApB and the 
MB thickness d,, are shown in figure 2 for T, - T = 5 IC The positiondependent 
stress components u;(C) and u;(C) at the angles -49 ,  45' and q5* (extremes of 
the free energy) are plotted in figures 3(a) and 3(b), respectively. The angular 
dependence of the Stresses o;(O) and o;(O) at the centre of the APB are plotted 
in figure 4. The free energies, the APB thicknesses and the stresses at the angles 
of the freeenergy extremes are given in table 4. The thickness d,, changes with 
the angle from 70 lattice constants at q5* to 40 lattice constants at -4Y. Since the 
function h(q5) in equation (25) is positive for all angles, the linear APB structure is 
always unstable. In spite of this the above analysis of the linear structure gives us 
an analytically tractable example of the APB, and its characteristics can be compared 
with the boundaries in other crystals, particularly in KSCN discussed in section 7. 
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It should be mentioned that the stability of the linear structure depends 1271 on the 
value of the coupling coefficient (7’-@‘)/2 between the order parameter components 
p and p (see equation (2a)). For the other physical properties of the linear APB this 
coupling is irrelevant. 
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length of the Abius vector represents 
-0.026 0 0,025 the value of the free energy uAPB(d) 

W 
’ -0.026 

[era/cml in HgzBrz. 

Table 3. Coemcients of the free energy for H&Brz (a) values according to lemanov n 
a1 [U], (6) values according to Bana n af [24]. 

(4 1;LlP’ 1?/P‘ 1,nlP’ z(7‘ - 8‘)/8’ P’lm 
(J tu-3) (J u r 3 )  (J m-3) - (KtI2 J-1) 

1.43 x 109 2.5 x 109 2.8 109 - 1  2.8 x 1021 

(4 P’V AV V Pi V 
(9 (J K-I) (m-9  (J tu2) 

2.006 x 10” 22.3 x io-’ 120 x 1.49 x 10-1~ 

It is also interesting to estimate the share of the free energy arising from the 
inhomogeneous strain. If the APB is cut into thin slices perpendicular to the C 
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zem U; component (shown by arrows). 

-8 
-180 -90 

0 WmI 

axis and each of them are allowed to deform freely (i.e. neighbouring layers need 
not match each other and the compatability conditions (8) are not operating), the 
homogeneous part of the free energy (I&) should be replaced with (loa). The value 
of the free energy is then 0.01784 erg cm-*. Consequently, for the orientation &, 
around 0% (less than 0.005%) of the free energy has a mechanical origin, while it is 
42% for the angle - f r .  
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Table 4. The free energies, APB thicknesses and the stresses at several angles. 

1467 

7. Antiphase boundaries in KSCN 

The KSCN crystal has a body-centred tetragonal structure of the high-temperature 
phase with the space group Dii (14/mcm) and two molecules in the unit cell. The 
structure is built up from layers which are perpendicular to the z axis. These layers 
contain the orientationally disordered SCN- dipoles (lying in the layers) and alternate 
with layers of K+ ions. The phase transition at 414 K is connected with the head-tail 
antiparallel ordering of SCN- dipoles 1281, resulting in a doubling of the primitive 
cell and a reduction in the symmetry to the DE (Pbcm) space group 1291. The 
tetragonal structure is depicted in figure 5@) and the linear APB is schematically 
shown 1301 in figure 5(c). In the I, y coordinate system, which is rotated through 4S0 
with respect to the tetragonal d, y‘ axis used in other papers 129-311, the results in 
section 5 are directly applicable. The elastic constants calculated from the ultrasonic 
measurements are 1331 

cI1 = 25.70GPa cla = 18.70GPa cI3 = 2.50GPa 

= 19.00GPa = 31.20GPa c, = 4.00GPa. 

Flgurc 5. (a) z’, y’ are the natural tetragonal axes of KSCN 2, y are the tetragonal 
axes used in this paper, C is the normal to the APB plane. The spontaneous shear strain 
is also shown. (b) The tetragonal unit cell of KSCN. The open and full c i d e s  represent 
K+ ions; the full and broken lines represent SCN- p u p s  (c) The sVUclure of the 
[I101 (referred to z, y axes) APB, which makes an angle of 45’ with the mw. 
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The coefficients of the free energy (1) (table 5) can be estimated within the 
compressible pseudo-spin model [32], expanding the mean-field free energy up to the 
fourth order. The coefficients li ,  l i ,  Z; and p' were calculated using the results of the 
acoustic measurements [33]. For the value of X the formula X = 4kB/V has been 
used, where ICB is the Bolmann constant and V is the volume of the orthorhombic 
cell [32]. The coefficient gi of the gradient term was determined from the correlation 
length measured by diffuse neutron scattering [34] and the coefficient ga was assumed 
to be zero. The expansion coefficients are collected in table 5. 

Table 5. The f re~  energy expansion coefficienls of KSCN. 

'I 1; 1: A 8' r' 9i 

193.31 255.75 -84.24 0.08 11.23 48' 1.76 x 10-9 

(MPa) ( M a )  (MPa) (MPa K-l) (MPa) (MPa) (J m-') 

In the following we consider T = T, - 5 K at which p ,  = 0.46. Note that 
the magnitude of the streses (170) is proportional to the value p:. The angular 
dependences of the free energy uApB and the wall thickness dApB are plotted in 
figure 6. The positiondependent stress components d2(C) and u;(C) at the angles 
- 4 9 ,  4 9  and 4* are shown in figures 7(a) and 7(b), respectively, and the stresses 
u$(O) and ui(0) at the boundaly centre versus the angle 4 are depicted in figure 8. 
The values of the free energy, the APB thickness and stresses at several angles are 
(see the text below) given in table 6. 

Table 6. Free energies, APB thicknesses and st- at several angles, 

Since A > 1 and 0 < B < 1 (table 2) the APB with the lowest free energy 
can have two orientations 4+ = 11.9' and 4- = 78.1°, while the orientations 
with the lowest magnitude of the stress G$ are T+ = 6.0° and 3- = W O o .  The 
anisotropy of the free energy is lower than for Hg,Br,, but its value is more than 
ten times higher (figures 2 and 6). From figure 6(a), one can also expect the APB 
orientation to be symmetrically distributed around 45O, while the angles from the 
inteml (-WO, Oo) correspond to the higher values of the free energy. This agrees 
with the dominant 45' direction observed in the etched pattern [31,35]. The stress 
d2 varies with the angle from 13 to 77 MPa, not going to zero. The component d3 
varies only slightly from 62 to 65 MPa (figure 8; see for comparison figure 4). The 
APB is strongly strained. One can estimate the part of the free energy corresponding 
to inhomogeneous deformations in a similar way to Hg2Br,. For the angles $*, 55% 



APBs in H@r2 and KSCN 1469 

F@m 6. (U) I h e  angular dependence 
of the free energy UA~B(+) and the 
thickness d M B ( 9 )  in KSCN. (6) ?he 
length of the radius vector represenl.5 
the-value of the free energy u~ppg(+)  
in KSCN. 

of the total free energy has a mechanical origin. For 4 = -$r the corresponding 
percentage is 62%. The thickness of the APB is about four lattice constants and 
depends only weakIy on the angle. Since the function h( 4 )  is negative at all angles, 
the linear APB structure is always stable. 

8. Discussion 

We have theoretically studied the properties of APBS in improper ferroelastics with 
tetragonal-to-orthorhombic phase transitions. The APBS were considered to be quasi- 
one dimensional and parallel to the tetragonal z axis but otherwise arbitrarily 
oriented. The expressions for the angular dependence of the free energy (W), 
the thickness (22) and the stresses (17) were derived in the framework of the 
phenomenological approach. The APB with the minimum free energy can be oriented 
at two angles q5+ and 4- = 90' - 6+ given by the formulae in tables 1 and 2 If the 
quantity A < 1, then only the non-zero stress component in such an APB is uzz. If 
A > 1, the uniaxial inhomogeneous stresses uzz and uqn, which are parallel to the 
wall plane, must be imposed even around the APB with minimum energy to sustain 
its quasi-onedimensional structure. 

Using the free-energy expansion coefficients evaluated from experimental data 
it was shown that the linear boundary structure in HgzBrz is unstable for all APB 
orientations. In spite of this instability, which mainly depends on the mupling 
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F w m l  
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' -40 
b" Figure 7. (0) The positiondependent stress 

component ui(C) for three angles compond- 
ing to extrema1 values of the free energy in 
KSCN. (b) The positiondependent stress com- 
ponent for three angles correspnding to 
exlremal values of the free energy in KSCN. I t  
depends only slightly on the angle. 
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b" 

Figure 8. The stress components o;(O) and 
u;(O) versus 9 in the centre of the APB. 
The APB has fhe minimum energy at 11.9O 
(78.1') ( s h m  by arrows in figure 6(u)). The 
wmponent 0: (always non-zero) pmsesses 
ik low1 magnitude at the angles 6 O  (or 
84'); see also figures 3(u) and 4 for 
comparison. 

coefficient (7' - ,8')/2 between the order parameter components p and q (table 3) 
[23,27], we have calculated the angle-dependent properties of the analytically tractable 
linear APB structure. The boundary with the minimum free energy is tilted through 
about 15O (or about 75O) with respect to the FDW and the stress component U; 
(I ul$) becomes zero. 

In KSCN the linear APB is stable for all onentations. Contrary to Hg,Br, the 
stress component 0; is non-zero even in the APB with the minimum free energy tilted 
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through about 12' (or about 78") with respect to the FDW. The magnitude of d2 
near the transition temperature varies between 13 and 77 MF'a and the stress U; is 
about 60 MPa. It is interesting to compare the increase in the free energy due to 
the inhomogeneous strains in the APBs. In HgzBrz it represents from 0% to 42% of 
the total free energy, depending on the APB orientation. In KSCN it is 55% even for 
the APB with the minimum free energy. These ratios are temperature independent, 
contrary to the values of the free energy and of the stresses. From the angular 
dependence of the free energy in figure 2(a), one expects the orientations of the APBs 
in the interval (Oo, WO). This is in agreement with experiment [31,35]. 

Note that we have assumed that ga &: gi in both materials under consideration. 
Nevertheless, the coefficient ga has not been determined from experiment up to 
now and its non-zero value could modify our numerical results to some extent. The 
properties of the APBs without the assumption of the quasi-one-dimensional structure 
of the wall remain also an open question. 
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